Rank 2 Arithmetically Cohen-macaulay Bundles on a Nonsingular Cubic Surface

نویسنده

  • DANIELE FAENZI
چکیده

Rank 2 indecomposable arithmetically Cohen-Macaulay bundles E on a nonsingular cubic surface X in P are classified, by means of the possible forms taken by the minimal graded free resolution of E over P. The admissible values of the Chern classes of E are listed and the vanishing locus of a general section of E is studied. Properties of E such as slope (semi) stability and simplicity are investigated; the number of relevant families is computed together with their dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank 2 Arithmetically Cohen-macaulay Vector Bundles on Certain Ruled Surfaces

Here we study rank 2 arithmetically Cohen-Macaulay vector bundles on a a ruled surface over a smooth genus q curve, essentially proving their non-existence if q ≥ 2 and the ruled surface is rather balanced.

متن کامل

Arithmetically Cohen-macaulay Bundles on Threefold Hypersurfaces

We prove that any rank two arithmetically CohenMacaulay vector bundle on a general hypersurface of degree at least six in P must be split.

متن کامل

Arithmetically Cohen-macaulay Bundles on Hypersurfaces

We prove that any rank two arithmetically CohenMacaulay vector bundle on a general hypersurface of degree at least three in P must be split.

متن کامل

Arithmetically Cohen-macaulay Bundles on Three Dimensional Hypersurfaces

We prove that any rank two arithmetically CohenMacaulay vector bundle on a general hypersurface of degree at least six in P must be split.

متن کامل

Acm Bundles on a General Quintic Threefold

We give a partial positive answer to a conjecture of Tyurin ([28]). Indeed we prove that on a general quintic hypersurface of P every arithmetically Cohen–Macaulay rank 2 vector bundle is infinitesimally rigid.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005